Understanding Performance Routing (PfR)

Ron Trunk, CCIE Chesapeake Netcraftsmen

Agenda

- PfR Overview
- Deployment
- Performance
- Conclusion

What Is Performance Routing (PfR)?

- Traditional routing protocols select shortest path
 - Shortest = Highest BW
- Sometimes "shortest path" is not best path
 - Congestion
 - Delay
 - Co\$t
- PfR selects the best performing path

Where Is PfR Used?

- WAN Edge
- Internet Edge
- More than one available path

Best Path Selection per Prefix, **Two or More Paths**

PfR Best Path

PfR Components

BR—Border Router

cisco.

PARTNER

Premier Certified

MC—Master Controller (decision maker)

PfR and OER What's the Difference?

- PfR has a broader technology scope
- PfR will greatly expand application intelligence
- PfR will leverage OER and other Cisco IOS[®] technologies to enable adaptive routing throughout the enterprise

OER

Prefix

esapeake

- WAN edge
- Network selection

ահանո

> Premier Certified

• Exit routing

PfR

- Applications
- Private IP (MPLS)
- Path selection
- Networkwide

Performance Routing (PfR)

Exit Selection Criteria

PARTNER

Premier Certified

IETCRAFTSMEN

Reachability, Delay, Loss, Jitter, MOS, Load, \$Cost

Performance Routing Policy Engine

Component Description

Master Controller (MC)

- Cisco IOS software feature
- Apply policy, verification, reporting
- Standalone or collocated with BR
- No routing protocol required
- Not required to be in forwarding path

• Border Router (BR)

- Cisco IOS software feature in forwarding router
- Learn, measure, enforcement
- NetFlow collector

esapeake

ոլուլ

> Premier Certified

Probe source (IP SLA client)

Information Flow

MC controls all operation **Issues commands to BRs** Contains traffic class/link data **Reports events Reports measurements** Makes policy decisions **BR** responds to MC commands Sends responses to MC Uses NetFlow, IP SLA, BGP, static, PBR Measures traffic class performance **Measures link performance** Enforces performance-based routing

ahaha

PfR Operates on Traffic Classes

Tyj)e	Example				
Destination (Manda	n Prefix atory)	10.0.0/8 20.1.1.0/24				
Application (Optional)	ACL	10.1.1.0/24 dscp ef 10.1.1.0/24 dst-port 50				
	Well-Known	10.1.1.0/24 telnet 20.1.0.0/16 ssh				
	NBAR	10.1.1.0/24 nbar RTP 20.1.1.0/24 nbar citrix				

Multiple ways to identify a traffic class.

Measuring Traffic Class Performance

Passive		10
PfR NetFlow monitoring	Delay	10
of traffic classes	JOSS	Se
Flows do not need to be on symmetrical paths provided that all	Reachability	nfor
exit/entry points are PfR-managed	Egress BW	Ш
• Active	ngress BW	1
PfR enables IP SLA feature	C	Nop
Probes sourced from BRs	Delay	
icmp probes learned or configured	Reachability	
tcp, udp, jitter need ip sla responder	Jitter 12.4T	
Both mode	MOS 12.4T	
Attempts to measure performance passively with NetFlow and only	Loss 12.4(15)T	
launches IP SLA probes as needed		
• Fast mode		
Probes all paths all the time		

alada

CISCO ...

Premier Certified

Chesapeake

NETCRAFTSMEN

PfR Policy

	Traffic	class	Link				
	Performance	Security	Performance	Administrative			
	 Delay Loss Reachability MOS Jitter 	SinkholeBlackhole	 Load balancing Max utilization 	Link grouping\$Cost			
	Scope	Global or per Pol	icy				
Ches	capeake CRAFTSMEN			Copyrig			

Selecting "Best" Traffic Class Path

- 1. Ignore paths without sufficient capacity
- 2. Select best performing path based on priority and variance
- 3. If tie, keep current or select random

Selecting "Best" Traffic Class Path

Copyright 2009

How Best Exit Path Is Enforced

- MC tells BR to insert prefix in BGP or static table
- MC tells BR to insert application/DSCP in policy route

How Best Entrance Path Is Chosen

- Measurements gathered for all entrances
- Measurements applied in priority order
- Identify entrances to downgrade
- Downgrade entrance using BGP advertisement

AS path prepend

Append downgrade BGP community

How Best Entrance Path Is Enforced

- Needed for inbound load balancing
- MC tells BR to modify eBGP advertisement

PfR Typical Customers

- Large, medium, and small enterprises with mission-critical Internet presence
- Enterprises with redundant WAN networks
- Enterprises with remote offices

PARTNER

Home office with dual internet connections

PfR Platform Support

ahaha

CISCO ...

Key Features of Cisco PfR Manager by Fluke Networks

- Executive-level reports
- Network health reports
- Fully Web-based
- Reports and alerts on network events
- Historical and trending graphical reports

ալայո

> Premier Certified

nesapeake

CRAFTSMEN

- Troubleshooting analysis
- Easy traffic class and policy configuration
- Technical support 24 hours a day
- Same design as NetFlow and IP SLA monitoring products

main menu > reporting > domain: HQ												
HQ: Exit Links												
Shahur	Evit Liek	Deuise		Last Change		Theochold Utilical	ian	То	kal I Ikiliaakia	-		
Status	Exit Link Opticial	Device		Last Change	(2. days)		IUI		tai otilisatit	11		
	Senaiu	Border 1	0⊿	2 Dec 2006, 09:12	(Z days)	80%		20.20				
0	Serial1	Border1	02	02 Dec 2006, 09:12 (2 days)		30%		17% 📕	% 🔜			
•	SerialO	Border2	04 Dec 2006, 12:05 (32 minutes)		2 minutes)	0%		0%				
HQ: Traffic Classes												
Status	Description	Policy		Current Exit	La	ist Change	Delay	Util	Avail	Loss	Jitter	MOS
0	VOIP IRL-UK	Critical VC	IP	Border1/Serial0	02 Dec 20	006, 09:12 (2 Days)	10ms	10%	100%	0%	5ms	4.85
0	SAP-1	Priority 2 SAP		Border1/Serial1	04 Dec 20	06, 11:15 (1:22 Hrs)	180ms	5%	100%	-	-	-
Ū.	HTTP	LOW Priority	HTML	Border2/Serial0	02 Dec 20	006, 09:12 (2 Days)	100 ms	30%	99.99%	-		-

Agenda

- PfR Overview
- Deployment
- Performance
- Conclusion
- Q and A
- Backup Slides—Troubleshooting

Design Questions

- 1. Do I have redundant WAN connections? Internet, IPSEC/GRE, MPLS, ATM, Frame Relay Configure as PfR external interfaces
- 1. Which routers terminate the WAN? These are PfR border routers
- 1. What routing protocols over WAN? BGP, static covered by PfR All others, cfg static with redistribution and filtering
- 1. Which router is PfR master controller?

Up to 5000 prefixes, dedicated 7200 or 3800 MC Up to 20K prefixes with NPE-G2

For a few to few hundred prefixes, configure MC on BR

CISCO PARTNER

Design Basics

Designing Your Policy

1. What policy is important?

Exit performance

Delay, loss, reachability, throughput

Jitter, MOS

Entrance performance—12.4T

Delay, loss, reachability, throughput

Load distribution

Cost minimization (\$cost)

Primary/backup link groups

Path discovery (for troubleshooting)

Security 12.4T

CISCO. PARTNER

> Premier Certified

Default priority is performance then load

Design Questions

1. Determine interesting traffic class by:

Configure prefix Configure application Configure full ACL Learn interesting prefixes Learn interesting traffic classes Learn eBGP advertised prefixes (inbound optimization) Learn application

Routing Table Interaction

- For static routing, you must configure "Parent" Routes
 - Static equal cost routes
 - Points to external interface or next hop
- PfR injects additional routes with longer prefixes to steer traffic
- For BGP, parent routes must exist in BGP table
- If more than one BR, they must be IGP peers
- For application control, BRs must have direct link (or **GRE tunnel**)

CISCO

PARTNER

Which Router is the Master Controller?

- Up to a few hundred prefixes
 - Configure MC and BR on same router
- Up to 5000 prefixes
 - Use 3800 or 7200
- Up to 20,000 prefixes
 - 7200 with NPE-G2

ահանո

CISCO

PARTNER

Typical Deployments

SOHO/Broadband Deployment

·Cable and DSL WAN interfaces

•Eth8/0—OER Internal •Eth9/0—OER External •Ser12/0—OER External •ISR router terminates WAN •ISR is OER BR •Static default routing

10 to 100 traffic classes

ISR is also MC

·12.4

•Performance is most important

·Use OER default policy (performance overload)

Learn throughput and delay to get prefixes

BR—Border Router, MC—Master Controller

SOHO/Broadband Configuration

hest

Mission-Critical Internet Presence

Internet Presence Deployment

1. DS3 interfaces

Ser12/0, Ser13/0, etc.

- 1. Cisco 7200 and Cisco 3800 are typical BR/MC with BR terminating WAN connections
- 2. BGP routing

BRs must be iBGP peers Default routing -or-

Partial routes -or-Full routes

1. Support of up to 20,000 prefixes (with Cisco 7200-NPE-G2)

12.4T/14.4M Entrance Optimization

ախոխ

> Premier Certified

esapeake

- **1. Customers differ on policy priority**
- 2. Learn prefixes by throughput and delay

Same PfR Configuration for All

Internet Presence Configuration

Default Policy: Performance Then Load

CRAFTSMEN

Internet Presence Configuration

Outbound Load Balancing Only

PARTNER

Internet Presence Configuration

\$Cost Minimization Only

Enterprise VPN Deployment

Enterprise VPN Deployment Dual IPSec/GRE Tunnels

PARTNER

Premier Certified

JETCRAFTSMEN

Enterprise VPN Deployment MPLS Primary with IPSec/GRE Backup

- Application 1: Primary MPLS, backup IPSEC
- Application 2: I
- Backup then performance policy

Enterprise VPN Deployment MPLS Primary and IPSec/GRE Backup Configurations*

Group Links

oer master border 1.1.1.1 key-chain key1 interface Serial1 external link-group RED interface Tu0 external link-group BLUE interface eth1/1 internal

border 1.1.1.2 key-chain key2
interface Serial3 external
link-group RED
interface Tu2 external
link-group BLUE
interface et3/1 internal

Specify Link Preference

oer-map MAP 10 match Appl1 set delay threshold 100 set link-group RED fallback BLUE

oer-map MAP 20 match Appl2 set link-group BLUE

Enterprise VPN Deployment Fast Failover and Load Balancing

- Simultaneous probing on all exits
- Quick failover to alternate path within 3 seconds

Oer master

esapeake

CRAFTSMEN

max-range-utilization percent 10 learn

PARTNER

Premier

list sequence 10 refname REM_OFC

traffic-class prefix-list REM_OFC_LIST throughput

Ip prefix-lst REM_OFC_LIST permit 10.1.0.0/16 Ip prefix-lst REM_OFC_LIST deny 0.0.0.0/0 oer-map MAP 10 match oer learn list REM_OFC set mode monitor fast set unreachable threshold 5 set active-probe echo 10.1.1.1 set active-probe echo 10.1.1.2 set probe frequency 2 set resolve range priority 1

BRing Border Router, MC—Master Controller

Enterprise VPN Deployment Optimize Voice Traffic Between Two Sites

Tunnel0–20 out of 100 sample had MOS < 4.00

BRing Border Router, MC—Master Controller

esapeake

CRAFTSMEN

PARTNER

Enterprise VPN Deployment Optimize Voice Traffic Between Two Sites

Identify Voice Traffic

Packets marked with DSCP bits

```
ip access-list extended VOICE-LIST
  permit ip any 10.1.1.0 0.0.0.255 dscp
    ef
```

Or

UDP port range

```
ip access-list extended VOICE-LIST
```

```
permit udp any 10.1.1.0 0.0.0.255
range x y
```

Configure Voice Policy

oer-map MAP 10
match traffic-class access-list
VOICE-LIST
set active-probe jitter 10.1.1.1
target-port 2000 codec g729a
set probe frequency 2
set mos percent 20 threshold 4.00
set resolve mos priority 1
set mode monitor fast

Far End configuration

Ip sla responder

Enterprise VPN Deployment

Optimize Application

Latency < 100 ms

FTCRAFTSMEN

PARTNER

Premier

Enterprise VPN Deployment

Optimize Application—Define Your Own Application

Define Application Using access-list

Ip access-list extended APPL1_DEF permit tcp any eq 200 any permit tcp any any eq 200

Ip access-list extended APPL2_DEF permit ip any any dscp af12

ախոխ

esapeake

Add Application Definition to OER Database

Oer master

application define APPL1 access-list APPL1_DEF application define APPL2 access-list APPL2 DEF

Learning User Defined Applications

Oer master learn list seq 30 refname LISTA traffic-class application APPL1 list seq 40 refname LISTB traffic-class application APPL2

Apply Policy to Learned Application oer-map MAP 10 match traffic-class learn list LISTA set resolve delay priority 1 variance 5 oer-map MAP 20 match traffic-class learn list LISTB set resolve range priority 1

Enterprise VPN Deployment Optimize Application Identified by NBAR*

- Use NBAR to identify application traffic
- NBAR is activated automatically on BR

Learning NBAR Identified Applications

```
Oer master
learn
list seq 30 refname LISTA
traffic-class application nbar rtp-audio
list seq 40 refname LISTB
traffic-class application nbar citrix
```


Configure NBAR Identified Applications

Ip prefix-list LIST1 permit 10.1.1.0/24 Ip prefix-list LIST1 permit 10.1.2.0/24

Oer-map MAP 10 match traffic-class application nbar citrix prefix-list LIST1

PfR with **NAT**

MC/BR Router Combined

ahaha

Premier

hesapeake

VETCRAFTSMEN

PfR and NAT

Existing flow continues on same exit; no sessions are dropped

New flow goes out via new exit

Avoids problems if ISP is performing RPF checking

With Separate MC and BR

PfR with NAT—Configuration Example

Identify Traffic to be NAT Translated

PARTNER

Premier Certified

CRAFTSMEN

Security Considerations

- **Deploy MC behind firewall**
- Separate private VLAN for MC and BR
- Private addressing for MC and BR communication
- No routing on MC

no ip routing

Premier Certified

no router ...

Routing Not Required on MC

PfR MC Redundancy

What if MC goes down?

Routing defaults to normal as if PfR was not configured

Still need MC redundancy?

Available

Stateless redundancy without configuration synchronization available using HSRP

On roadmap

ahaha

Premier Certified

Stateless redundancy with synchronized configuration and stateful redundancy

PfR MC Redundancy

Stateless redundancy using HSRP

