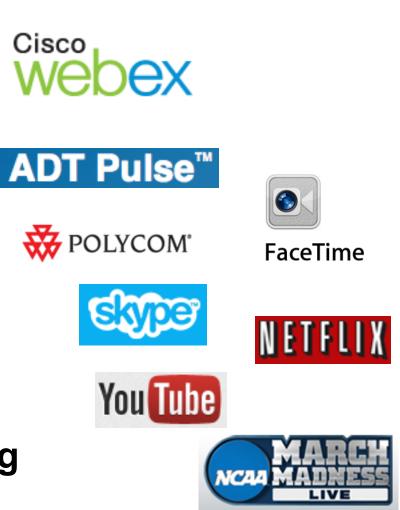
How to Keep Video From Blowing Up Your Network

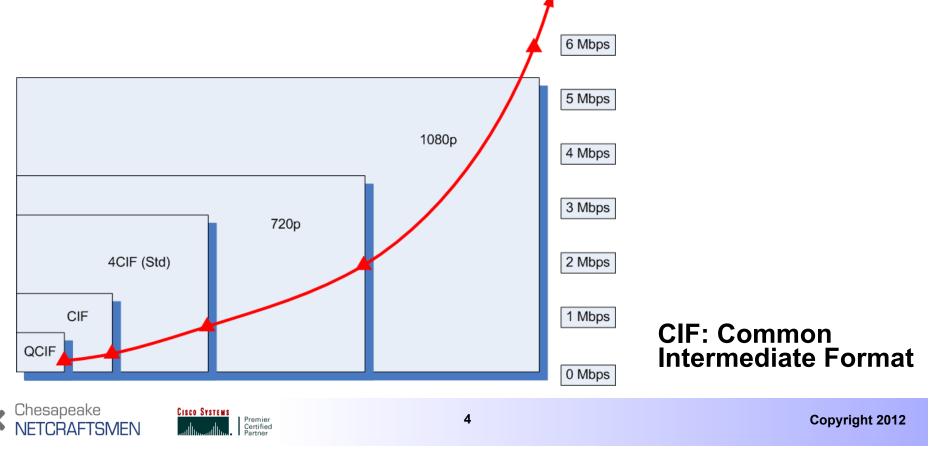
Terry Slattery Chesapeake Netcraftsmen Principal Consultant CCIE #1026

Copyright 2012


- Types of Video
- The Impact of Video
- Identifying Video
- Handling Video
 - Video you want
 - Video you don't want
- When You Must Add Bandwidth
- Monitoring Video

Types of Video

- Interactive video
 - Telepresence
 - Video conferencing
 - WebEx
- Streaming video
 - Training videos
 - Security cameras
 - Executive presentations
- Entertainment
 - Netflix
 - YouTube
 - Internet broadcasts
- Video volume is increasing



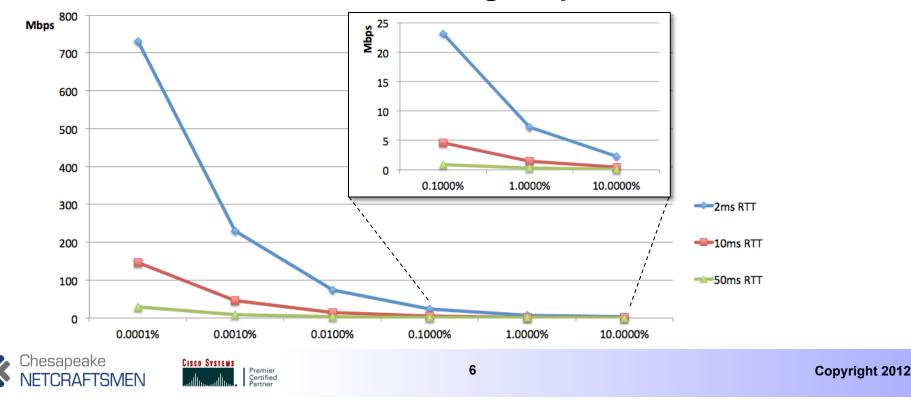
Copyright 2012

3

Video Bandwidths

- Transport protocol influences the impact
 - UDP has no flow control; used for interactive video
 - TCP has flow control; used for most streaming and entertainment

- Types of Video
- The Impact of Video
- Identifying Video
- Handling Video
 - Video you want
 - Video you don't want
- When You Must Add Bandwidth
- Monitoring Video



Blowing Up Your Network

- Congestion
 - Forces egress drops on interfaces
 - Reduced bandwidth for other applications

TCP throughput is affected by packet loss

- 0.0001% loss TCP affects goodput

Video Impact on Wireless

- Congestion causes significant reduction in throughput
- Wireless retransmissions are typically at a slower speed (5Mbps vs 11Mbps)
 - Result: ~3x the bandwidth is consumed
 - First packet, experienced a wireless collision
 - Retransmitted packet, sent at ½ the speed of the first, takes 2x the time to transmit

- Types of Video
- The Impact of Video
- Identifying Video
- Handling Video
 - Video you want
 - Video you don't want
- When You Must Add Bandwidth
- Monitoring Video

Identifying Video

- Interactive
 - UDP transport
 - Typically the highest bandwidth 300Kbps 5Mbps
- Streaming
 - Bandwidth depends on the encoding and frame rate
 - UDP: fixed data rate
 - TCP: flow controlled
- Downloads
 - TCP: flow controlled

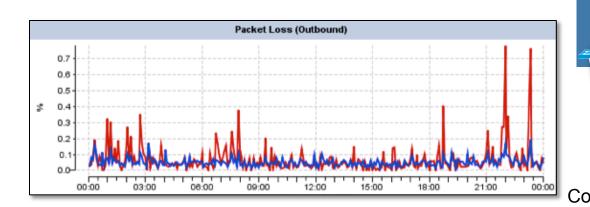
TCP will try to use as much bandwidth as it can

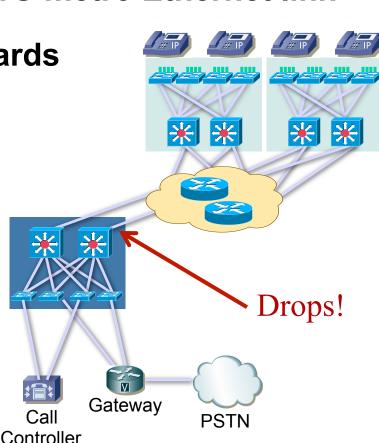
Identifying Video on the Network

- Packet captures
- NetFlow
 - Constant packet flow, relatively steady data rate
 - IP addresses involved
- Application analysis tools (Opnet ARX)
- Who has time to go look for video?

Practical Approach to Identifying Video

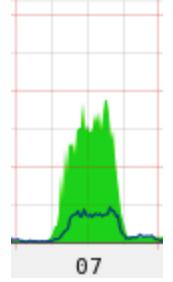
- Look for congested links
 - Top-N 95th percentile utilization is best
 - Top average utilization
 - Packet capture on the top links
- Source/Dest IP address
 - Compare with known video sources and content providers
- UDP port number ranges
 - Vendors publish the port ranges used
 - Still need to verify actual use
- Monitor network choke points
 - Internet access points
 - Corporate LAN->WAN routers





Monitor the LAN?

- Depends on link speeds
 - It's easy to oversubscribe a 1G metro Ethernet link between two big facilities
 - Interfaces showed high discards
 - Shaping just increases jitter
- You won't often be told of new video deployments


Premier Certified

Example "War Story"

- The situation
 - T3 link
 - Complaints about application performance
 - Traffic volume increased on weekday mornings
 - Traffic volume decreased at quitting time
- Application analysis: TCP/HTTP
- Half the traffic from three sources:
 - Pandora.com
 - Akamai
 - LimeLight Networks

24-hour utilization 5 Mbps Units

- Types of Video
- The Impact of Video
- Identifying Video
- Handling Video
 - Video you want
 - Video you don't want
- When You Must Add Bandwidth
- Monitoring Video

Handling Video That You Want

- Use QoS to handle it
 - Set bandwidth limits
 - Protect the other apps
 - Drop excess data
 - Do not mark down to lower DSCP value
- Size links to handle the expected load
 - Monitor link utilization 95th percentile
 - Set thresholds to provide advanced notification
- Use Call Admission Control (CAC)
 - Better than relying on QoS, which can't distinguish between calls
 - Prevents the N+1 call from affecting all calls

Handling Video That You Don't Want

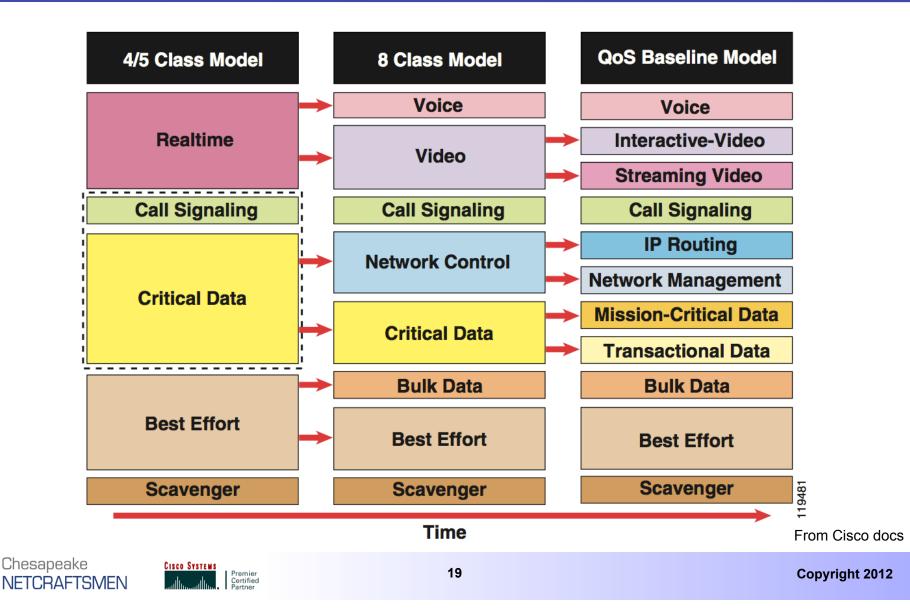
- Packet filtering
 - Content identification (look for products that do this)
 - Be careful of blocking OS updates
- QoS to de-prioritize traffic
- Configure undesirable video to:
 - Use remaining bandwidth
 - Use an allocated small percentage of bandwidth
- "War Story" outcome
 - Implemented QoS, using remaining bandwidth

An Approach to Handling Video

- Design QoS with CxO buy-in and support

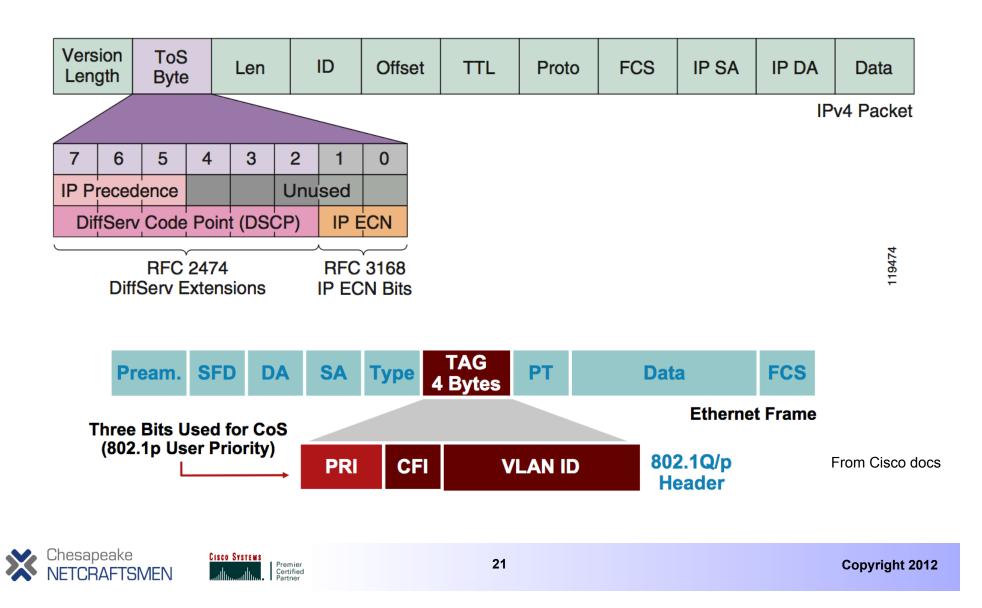
 Everyone thinks their traffic is the most important
- Questions to answer:
 - Which video apps get priority over other video apps?
 - How much bandwidth to allocate to video?
 - Is video limited to a maximum bandwidth?
 - Are some data apps more important than some video?
 - Should access control (CAC) be used?
- How will video be identified?

Quality of Service (QoS)


- Prioritize different types of network traffic
 Allocate bandwidth for each traffic type
- QoS mechanisms
 - Classification: identify the traffic types
 - Marking: mark each traffic type with L2 or L3 tags
 - Queuing and forwarding: handling the data
- QoS design can be challenging
 - Competing interests for network bandwidth
 - Everyone thinks their traffic is the most important
 - Determine traffic classes and bandwidth allocations

QoS is only used when congestion occurs

QoS Traffic Classes


QoS Classification and Marking

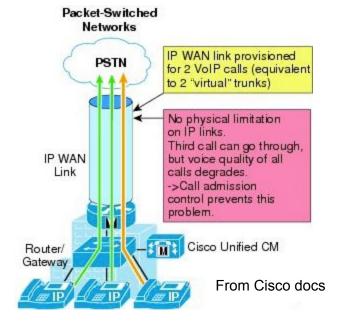
- Classification and marking at network ingress
- Packet type is identified by its characteristics
 - IP address (Access Control List)
 - TCP/UDP port number (Access Control List)
 - Packet inspection (Network-Based App Recognition)
- Add Markings
 - Layer 3: Differentiated Services Code Point
 - Layer 2: Class of Service
- Markings are used by other devices to determine forwarding behavior

QoS Marking

QoS Example: Healthcare

QoS Classes / Applications	Recommended Layer 3 QoS Markings		IPP	
	PHB	DSCP	CoS	
Network Control	CS6	48	6	
Voice / IP Telephony	EF	46	5	5 %
Clinical Life Critical	CS5	40	5	
Multimedia Conferencing	AF41	34	4	10 %
Real-Time Interactive	CS4	32	4	
Multimedia Streaming	AF31	26	3	10 %
Call Signaling	CS3	24	3	
Low-Latency Data	AF21	18	2	15 %
OAM (Net Mgmt)	CS2	16	2	
High-Throughput Data	AF11	10	1	50 %
Low-Priority Data	CS1	8	1	
Best Effort	0	0	0	

QoS only applies when congestion exists!



Call Admission Control (CAC)

- Don't allow a call when bandwidth is insufficient
- CAC Methods
 - Local determination
 - Counting calls
 - Measuring bandwidth
 - Measurement
 - Based on brief tests
 - E.g., Cisco IP SLA
 - Resource Reservation Protocol (RSVP)
 - Verifies sufficient path bandwidth
 - CAC Reference: http://www.cisco.com/en/US/docs/voice_ip_comm/ cucm/srnd/8x/cac.html

- Types of Video
- The Impact of Video
- Identifying Video
- Handling Video
 - Video you want
 - Video you don't want
- When You Must Add Bandwidth
- Monitoring Video

Network Engineering

- Identify the potential congestion points
- Design sufficient network capacity at the congestion points
 - Be careful where MCUs are located
- Don't put more traffic in a queue than the queue's bandwidth can handle
- On-going monitoring of queue stats

Adding Network Bandwidth

- More bandwidth is sometimes the answer
- Applications are slow even after QoS
 - Are links in the path oversubscribed?
 - More bandwidth may be required
- Business requirements change
 - The network must adapt
 - Challenge: identify the need before it is critical

- Types of Video
- The Impact of Video
- Identifying Video
- Handling Video
 - Video you want
 - Video you don't want
- When You Must Add Bandwidth

Monitoring Video

Continuous Monitoring

- Packet loss in audio/video endpoints
 - RTCP data
 - CDR/CMR data (Call Detail Record/Call Maintenance Record)

Application server TCP retransmissions

- Quantity depends on your network
- Part of TCP's flow control
- Look for excessively large counts
- Use netstat -p tcp

Summary

- Video volume is increasing

 Controlling the sources is difficult
- Identify the video in your network
- Handle all video with QoS and CAC
 Both wanted and unwanted
- Network monitoring to detect video's impact
- Be prepared to add bandwidth when needed

Questions?

Terry Slattery Chesapeake Netcraftsmen

