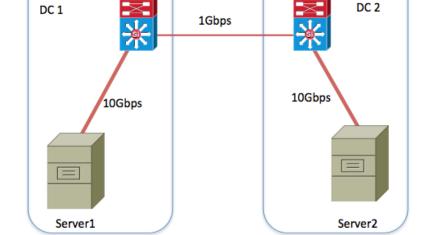
The Impact of Packet Loss on TCP Performance

Terry Slattery
Chesapeake Netcraftsmen
Principal Consultant
CCIE #1026

- Application Slowness
- The Impact of Packet Loss
- Causes of Packet Loss
- Detecting Packet Loss
- Fixing Packet Loss
- Background Reading

Application Slowness


- Packet Loss (Prime Cause)
- Inadequate Server Performance
 - I/O bound process
 - DB locks
- Poor Application Architecture
 - Application ping-pong over high latency path
 - Choke points
- Buffer Bloat
- How Much Loss Is Acceptable?

A: 1%

B: .01%

C: .001%

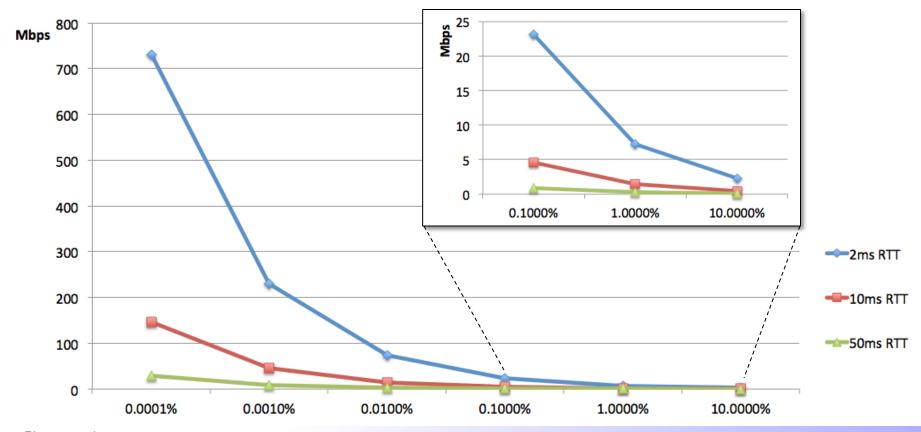
D: .0001%

- Application Slowness
- The Impact of Packet Loss
- Causes of Packet Loss
- Detecting Packet Loss
- Fixing Packet Loss
- Background Reading

The Mathis Equation

- TCP Throughput is based on Bandwidth-Delay product, assuming variable window size
 Rate = bandwidth x round-trip-delay
- TCP Throughput Experiments and Simulations
 - Paper: The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm

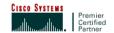
$$rate \le \frac{mss}{rtt} \times \frac{1}{\sqrt{p}}$$


- Typical loss rates:
 - Fiber: p=10E-13 (1 bad bit in 10E13 bits)

Huh? Please Explain.

- Mathis Equation Describes TCP "Goodput"
- 1Gbps Link

- Application Slowness
- The Impact of Packet Loss
- Causes of Packet Loss
- Detecting Packet Loss
- Fixing Packet Loss
- Background Reading


Causes of Packet Loss

- Duplex Mismatch!
 - Either source or destination
- Bad Cabling (Occasional)
 - Pinched cable
 - Cat-3 cable
 - Bad connectors, poor crimps, corrosion
 - Scratched or dusty fiber connectors
- Egress Congestion
 - Too much data for the link capacity
- Ingress Overruns
 - Fast servers, old switch blade

1Gbps

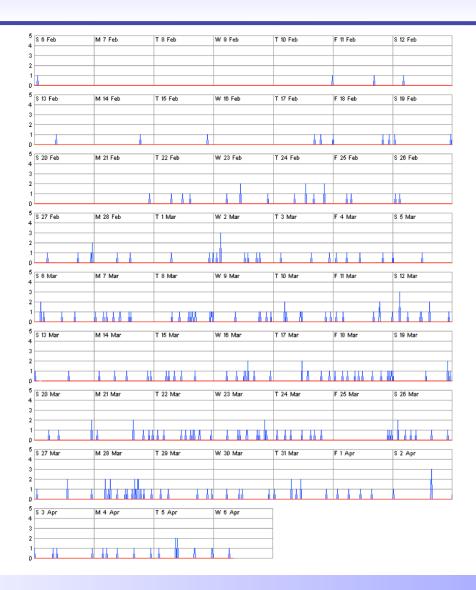
10Gbps

Buffer Bloat

- Confuses TCP retransmission algorithm
- Retransmits at 2*RTT
- Excessive buffering holds more than 2*RTT of data
- Result: TCP retransmits after 2*RTT
 - Some packets are delivered more than once
 - Wastes network bandwidth

- Application Slowness
- The Impact of Packet Loss
- Causes of Packet Loss
- Detecting Packet Loss
- Fixing Packet Loss
- Background Reading

Detecting Packet Loss


- Monitor Interface Stats
 - Duplex mismatch
 - FCS, CRC, Runts on full duplex interface
 - Late collisions on half duplex interface
 - Errors of any type
 - NMS or periodic 'show interface | include'
- NMS Caveat
 - A log of low volume interfaces obscure high volume interfaces
 - Two thresholds:
 - % errors
 - Total count of errors
- Interface Discards/Drops
 - Congestion indicator

Increasing Loss on a Fiber Link

- 10G Fiber Backbone
 - Bad patch cable
 - All other similar links were clean

Detecting Packet Loss

- Monitor Client or Server TCP Stats
 - Windows reports a rate via SNMP, not a count
 - TCP retransmission counts via CLI

```
netstat -sp tcp
-s = display stats
-p tcp = tcp protocol stats
```

- Warning...
 - TCP flow control is based on packet loss, so...
 - Some retransmissions are normal
 - Look for Retransmissions
 Transmitted Packets
 < 0.0001% or better

- Application Slowness
- The Impact of Packet Loss
- Causes of Packet Loss
- Detecting Packet Loss
- Fixing Packet Loss
- Background Reading

Fixing Packet Loss


- Check Duplex Settings!
 - Memory of negotiation problems still exists
 - Auto-Auto works with newer equipment
 - Document devices that need fixed speed/duplex
- Replace Cables and Connectors
- Add QoS on Congested Interfaces
 - Heavily oversubscribed links need more BW
 - 95th percentile of 50% is a reasonable threshold
- Bad Switch Port
 - Look for ingress overruns on old blades
 - Several 1G servers on port group of 1G ASIC

- Application Slowness
- The Impact of Packet Loss
- Causes of Packet Loss
- Detecting Interface Errors
- Fixing Interface Errors
- Background Reading

Background Reading

- Blogs at Netcraftsmen.net
 - Search for TCP or Mathis
- TCP Performance Papers
 http://www.linuxsa.org.au/meetings/2003-09/tcpperformance.print.pdf
- "Buffer Bloat"

Summary

- TCP is sensitive to small percentages of packet loss
- The causes are easy to determine and fix
- Few people understand the impact
- Fewer people work to clean up their network
- "What's In Your Wallet Network?"

Questions?

Terry Slattery Chesapeake Netcraftsmen

