#### **SDN APIs for Communications**

When Applications and the Network Talk with Each Other

Terry Slattery Principal Architect NetCraftsmen CCIE #1026



© All Rights Reserved

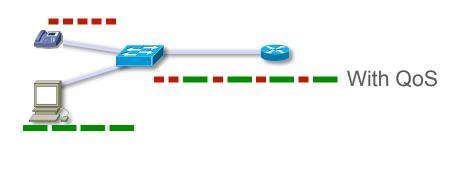
#### Agenda

History of Traditional Networking

SDN and UC

RESTAPI

**Future Directions and Summary** 




© All Rights Reserved

#### **Traditional Networking**

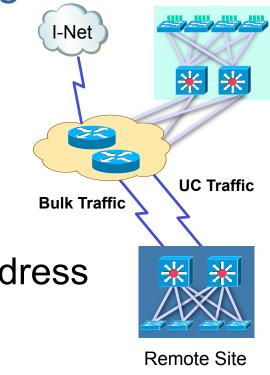
#### Complex configurations

- Low-level CLI commands
- Non-intuitive interactions ip access-list extended QOS-LOW-LATENCY-DATA
- QoS example:



ip access-list extended QOS-LOW-LATENCY-DATA remark Latency sensitive Data application traffic permit tcp host 10.1.1.2 any any permit tcp host 10.1.1.4 any any deny ip any any

class-map match-any OUT-LOW-LATENCY-DATA description Low-Latency Data match access-group QOS-LOW-LATENCY-DATA match ip dscp af21


policy-map OUT-QUEUING-REMOTE1 description Outbound queuing and scheduling class OUT-LOW-LATENCY-DATA bandwidth percent 20 queue-limit 100 random-detect

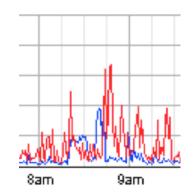


© All Rights Reserved

#### **Traditional Networking**

- Relatively static configuration
  - Difficult to synchronize with business needs
  - Not responsive to applications




#### Forwarding based on destination address

- Drives equal cost multi-path topologies
- Complex policy routing configuration to implement policy routing



#### **Traditional Networking**

- Low network utilization 30-40%
  - Reserve bandwidth for traffic bursts
  - Unable to manage traffic with sufficient granularity



- Applications and the network don't communicate
  - Apps can't ask the network for special service
  - The network can't inform apps of network changes
  - App and network teams often don't work well together
  - Need special application performance monitoring systems





#### The Network Is Not Agile

Compute and storage are very agile



- VMs can be created and moved within minutes
- Containers will accentuate the difference (they activate in seconds)
- Network changes require days or weeks
  - Change control systems induce delays
  - Changes implemented by manual processes
  - Network staff is often reluctant to use automation







#### We Need Something Better

- Bidirectional communications between applications and the network
- Faster configuration through automation
- Simplify configurations with powerful abstractions

7

- Better security (built-in and provable)
- New forwarding path selection mechanisms

NetCraftsmen

#### Agenda

**Traditional Networking** 

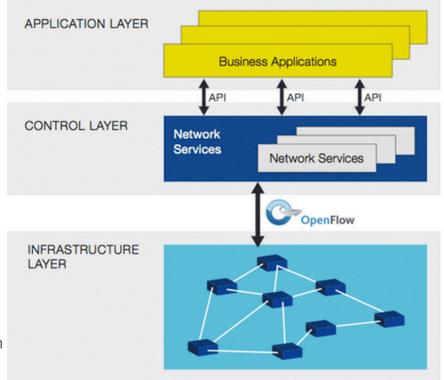
SDN and UC

**RESTAPI** 

Future Directions and Summary

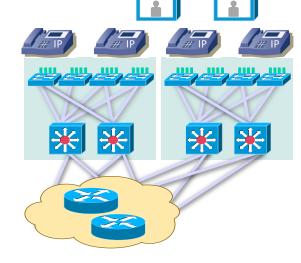


#### **SDN** Overview


9

#### • What is Software Defined Networking?

- A new form of networking
- Decouples control from packet forwarding
- Software control of the network
- Abstractions hide details of the infrastructure layer
- Network and applications communicate with each other


Image: Open Networking Foundation





#### The Advantages of SDN

- Applications and Network communicate
- Networks become more dynamic and agile
- Centralized control system makes better decisions
  - Programming is easily done across multiple devices
- Packet forwarding based on more than destination address
- New path selection protocols







#### Architecture of SDN for UC

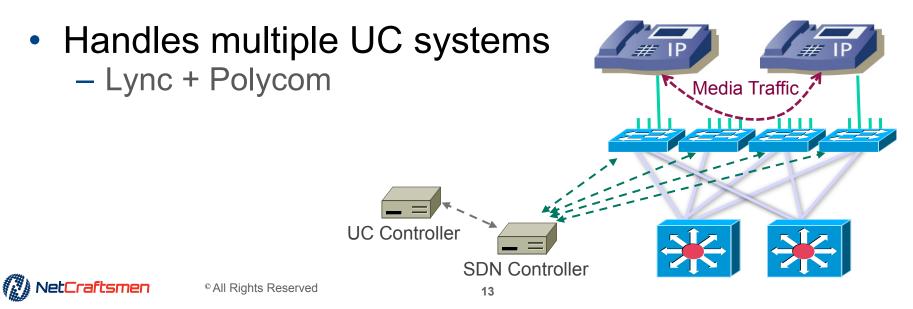
 UC controller UC&C talks with QoS Infrastructure Service App Controller Virtual QoS Network Service API Network QoS Service App Instance Automated QoS QoS talks with the SDN **Network Service** Policy Definitions Application controller SDN North-Bound API SDN Controller SDN controller creates a VNI to contain the 1811 ------Packet Forwarding Packet Forwarding UC infrastructure Packet Forwarding Packet Forwarding



## **SDN Functions for Unified Communications**

- Dynamic QoS
  - Apply QoS classification and marking at call setup
- Call Admission Control
  - Integrated CAC across multiple UC applications
- Dynamic traffic engineering
  - Dynamic path selection
- Policy control
  - Controls details of the SDN automation system

Ref: IMTC "Automating Unified Communications Quality of Experience using SDN"


() NetCraftsmen

© All Rights Reserved

#### **Dynamic QoS Classification and Marking**

- UC controller identifies media traffic endpoints

   Based on 5-tuple: Src IP+port, Dst IP+port, Protocol (UDP/TCP)
- Works with encrypted media traffic (Lync & Skype)



#### **HP Unified Communications SDN**

Manfred Arndt, Chief Technologist - UC & Mobility March 18, 2015

© Copyright 2013 Hewiett-Packard Development Company, L.P. The information contained berein is subject to change

#### **Today's UC&C Challenges**

#### Network issues cause 60% to 80% of poor end-user QoE Legacy Networks have poor visibility into real-time traffic

- · Lync uses encryption by default, making DPI difficult and unreliable
- Skype tries to hide itself from networks

#### Traffic engineering & QoS is complex...easily broken

- Requires brute force static policies that must match application server settings
- Intermittent problems are tedious to diagnose, especially for Softphones and BYOD

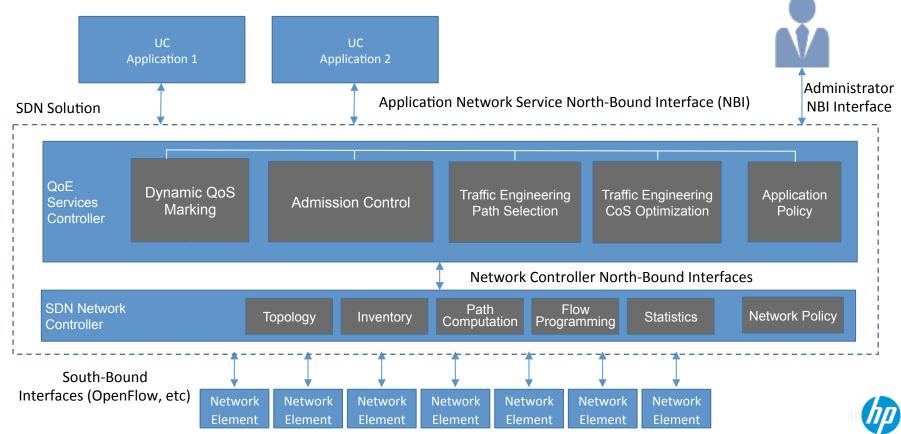
QoS engineering has to be managed consistently <u>end-to-end</u>, or it can have a negative impact for <u>all voice and video</u> <u>traffic</u>

15 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

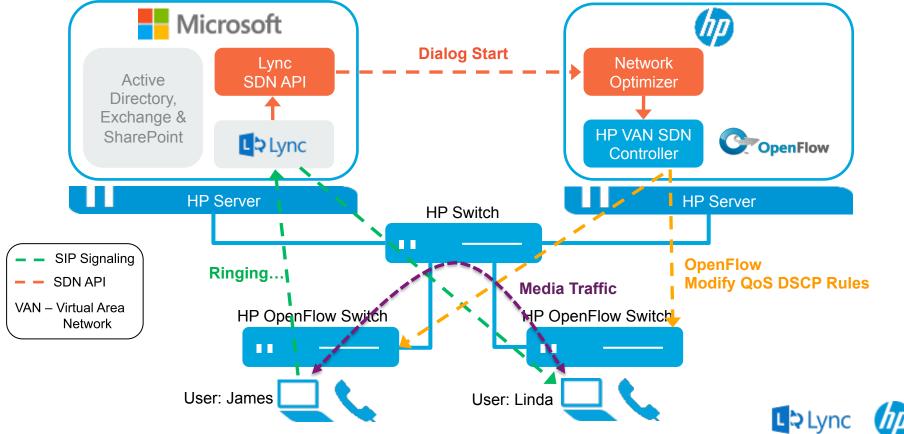
### **Software Defined Network (SDN) Vision**

Make Applications & Networks Play Better Together

*"Higher-layer application functions will become integrated with lower layers of the network, leading to two-way application awareness. <u>The network will be able to adapt to changing application requirements efficiently and effectively."*</u>

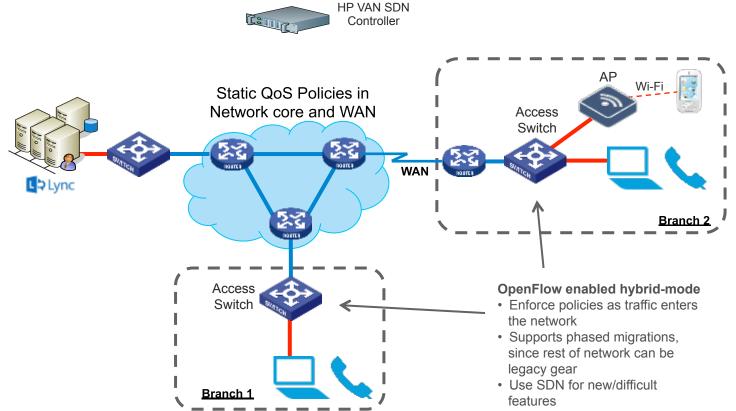

– Julie Kunstler, Ovum Research March 18, 2013

In other words, they will work together collaboratively to create <u>application directed networks</u>


# End-User Applications Talking to Networks

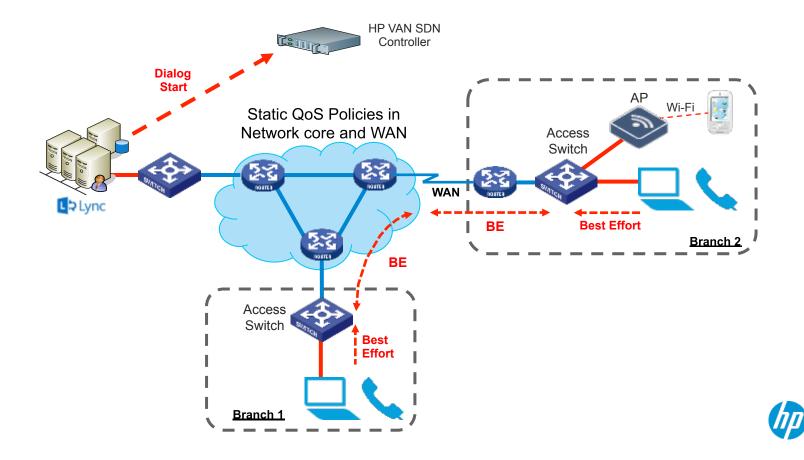
16 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

## **SDN Architecture**

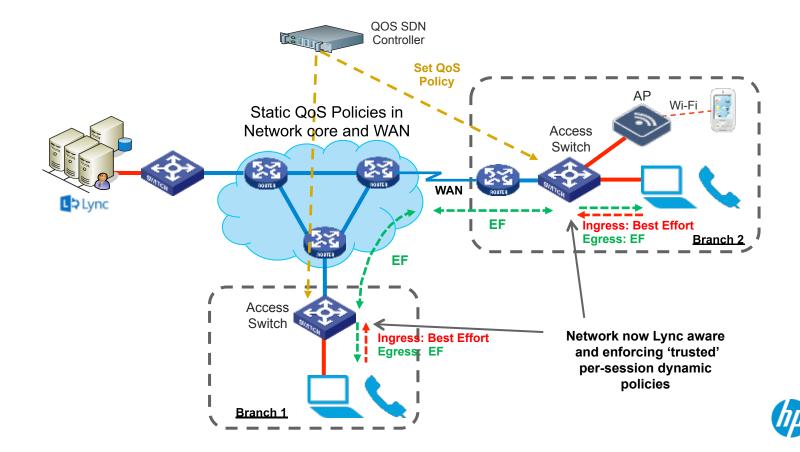



#### HP Network Optimizer SDN App - Microsoft Lync




18 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

#### HP's Hybrid SDN Approach






#### SDN QoS Model for Lync



#### SDN QoS Model for Lync



#### SDN QoS Model for Lync HP VAN SDN Controller AP Wi-Fi Access Switch 2.3 2.2 WAN L>Lync Ingres: Best Effort EF н 22 Egress: EF **Branch** EF Access Auto QoS for Lync is secured Switch Ingress: Best Effort.... Automated policy provisioning with reduced risk hp Branch 1



#### International Multimedia Telecommunications Consortium (IMTC)

- · UC SDN Use Cases and Data Model specifications
  - **Dynamic QoS** : dynamically assign QoS (Network Optimizer v1.2)
  - Admission Control : prevent voice and video from exceeding available bandwidth capacity
  - **Dynamic Traffic Engineering** : route media along path best able to meet performance requirements (dynamic policy based routing)

#### **Open Networking Foundation (ONF)**

 $\cdot$  Working with IMTC liaison to define standard North-Bound API schema



23 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice . HP Restricted

## Thank You to Manfred Arndt and HP

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

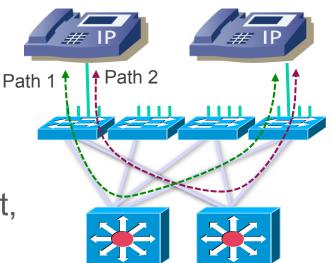


#### SDN and Call Admission Control

- CAC across multiple UC systems
  - Multi-vendor (Cisco and Avaya due to a merger or acquisition)
  - Multiple media sources (e.g., Lync + Polycom + Skype)
- Policy: handling queue oversubscription
  - Deny the call communicated back to the UC controller
  - Drop the traffic but looks like a network failure
  - Mark down to what class?
  - Have the UC controller make room for the new call

Note: CAC isn't currently supported in UC/SDN systems

25




## SDN and Dynamic Traffic Engineering

- Dynamically select a media traffic path
  - Based on media traffic type
  - Driven by current network loading and characteristics

#### Path selection protocols

- IS-IS or OSPF shortest path to the destination IP
- Constraint-based SPF
- Segment routing source routing using MPLS tags
- An area of research & development, ideally suited to SDN











# NEC's <u>SDN Ready</u> UC Platform

**Pr@grammableFlow** (PFlow) SDN Controller Integration with UNIVERGE UC Platforms



# Empowering the Smart Enterprise



#### **SDN Ready** Platforms Integration Summary

- NEC's UNIVERGE UC Platforms are now powered by NEC's
   PregrammableFlow (PFlow) SDN Controller
- NEC's "SDN Ready" Platforms dynamically allocate/manage/provision/ secure SDN Network resources
- NEC's "SDN Ready" Platforms are tightly integrated with the SDN Controller (NEC's PFlow) to ready the data infrastructure for various UC events
  - Some of those events described in next slide

Slide 28

Empowered by Innovation



#### **SDN Ready** Platforms Areas of Integration

#### Network Provisioning (Deployment/Setup)

– Voice, Video Priority

<u>چ</u>

End Point Auto Provisioning

On-Demand Meeting (Web/Video/Audio Collaboration/Conference)

#### Priority Communications (Crisis)

- Precedence calling (Government/DOD)
- Emergency Call (Public Safety)
- VIP Call (Hospitality)
- Emergency Broadcast or Notifications (Education/Public Safety)
- Nurse Calls (Healthcare)
- Employee Meeting/Video Conference (Enterprise)

Slide 29

Empowered by Innovation



#### **SDN Ready** Platforms Areas of Integration

#### Disaster Recovery (Backups & Failures)

(∰ ??

- Auto Re-allocation of Traffic & Priorities (QoS)
- Servers/Applications Backup/Synchronization

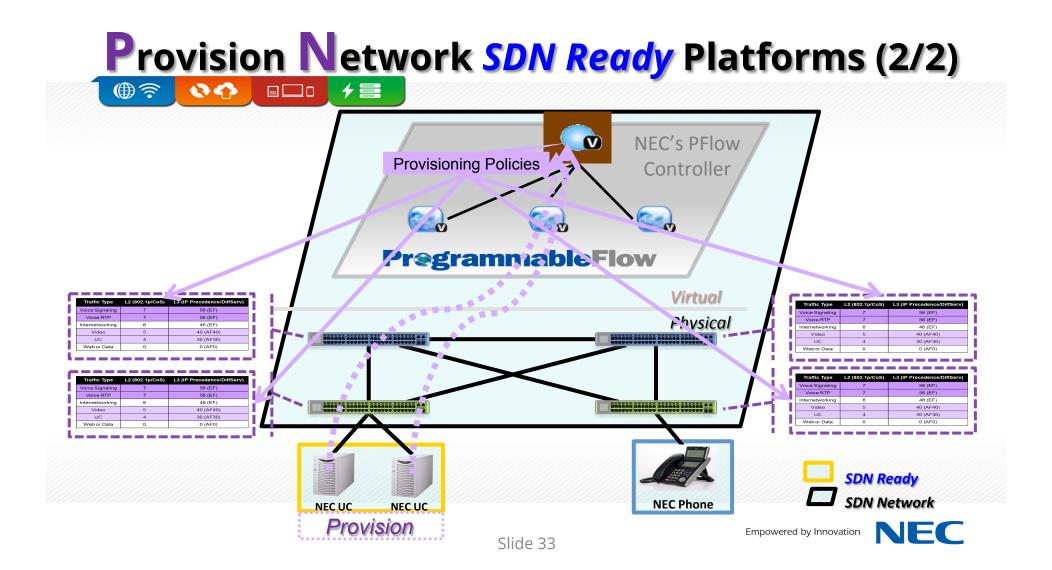




# **Network Provisioning**

Empowered by Innovation

NEC


# Provision Network SDN Ready Platforms (1/2)

- Provision SDN Network QoS, Bandwidth & Policies
  - UNIVERGE Voice/UC & Collaboration Applications
- Advantages
  - Simplify setup of communication system(s)
  - Allocate proper resources across network for critical applications
  - Centralized Communications Management

| Traffic Type    | L2 (802.1p/CoS) | L3 (IP Precedence/DiffServ) |
|-----------------|-----------------|-----------------------------|
| Voice Signaling | 7               | 56 (EF)                     |
| Voice RTP       | 7               | 56 (EF)                     |
| Internetworking | 6               | 46 (EF)                     |
| Video           | 5               | 40 (AF40)                   |
| UC              | 4               | 30 (AF30)                   |
| Web or Data     | 0               | 0 (AF0)                     |



Slide 32





# **Priority Communications**

Empowered by Innovation



#### Priority Communications SDN Ready Platforms (1/3)

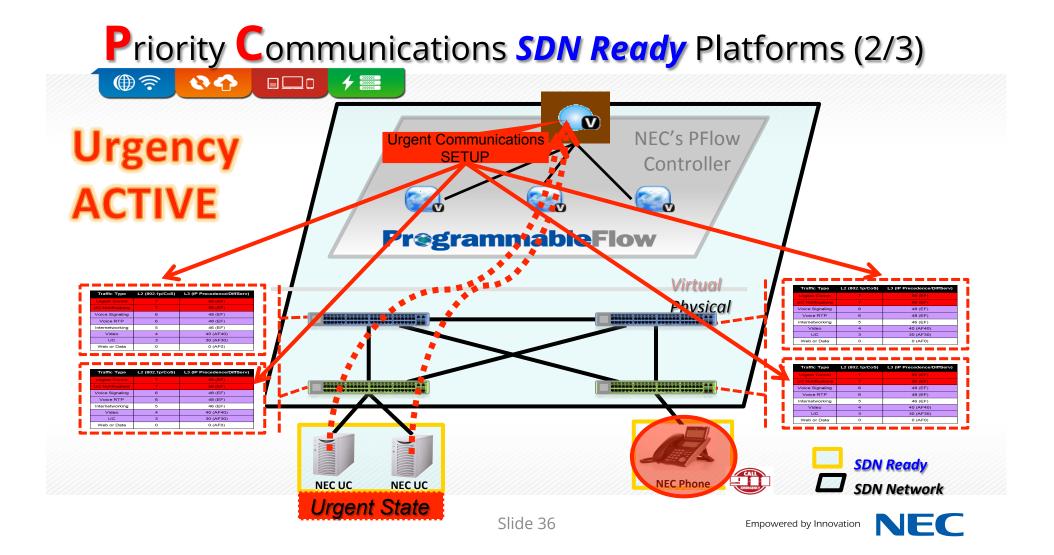
Prioritize Urgent Communication

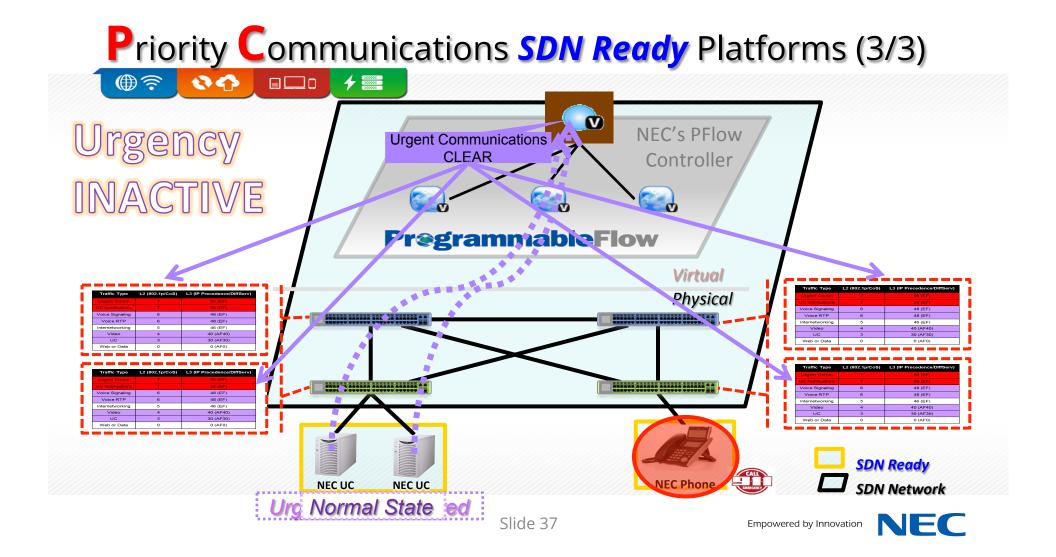
- Precedence Calling (Government/DOD)
- Emergency Calls (911)

N CP

- Emergency Call (Public Safety)
- VIP Call (Hospitality)
- Emergency Broadcasts (Education/ Public Safety)
- Nurse Calls (Healthcare)
- Advantages

 $\textcircled{\textcircled{}}$ 


- Efficient use of SDN Resources
- Dynamic Allocation of Network Resources for Urgent Communications
- Ensure end to end prioritization, not just in the communications system
- Centralized Urgent Communications Control


| Traffic Type     | L2 (802.1p/CoS) | L3 (IP Precedence/DiffServ) |
|------------------|-----------------|-----------------------------|
| Urgent Comm      | 7               | 56 (EF)                     |
| UC Notifications | 7               | 56 (EF)                     |
| Voice Signaling  | 6               | 48 (EF)                     |
| Voice RTP        | 6               | 48 (EF)                     |
| Internetworking  | 5               | 46 (EF)                     |
| Video            | 4               | 40 (AF40)                   |
| UC               | 3               | 30 (AF30)                   |
| Web or Data      | 0               | 0 (AF0)                     |

Slide 35

Empowered by Innovation





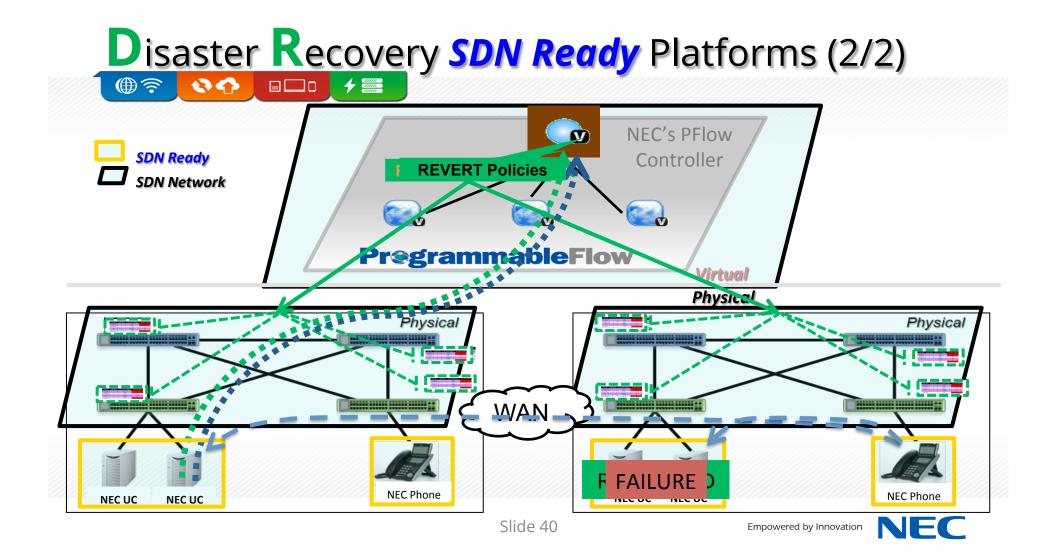




## **Disaster Recovery**

Empowered by Innovation




## Disaster Recovery SDN Ready Platforms (1/2)

- Provision Failover Scenario Bandwidth Policy
  - UNIVERGE Voice/UC & Collaboration Applications
- Advantages
  - Provide Dynamic Disaster Recovery Communication(s)
  - Re-allocate resources across network in Disaster Recovery State
  - Centralized Disaster Recovery Management

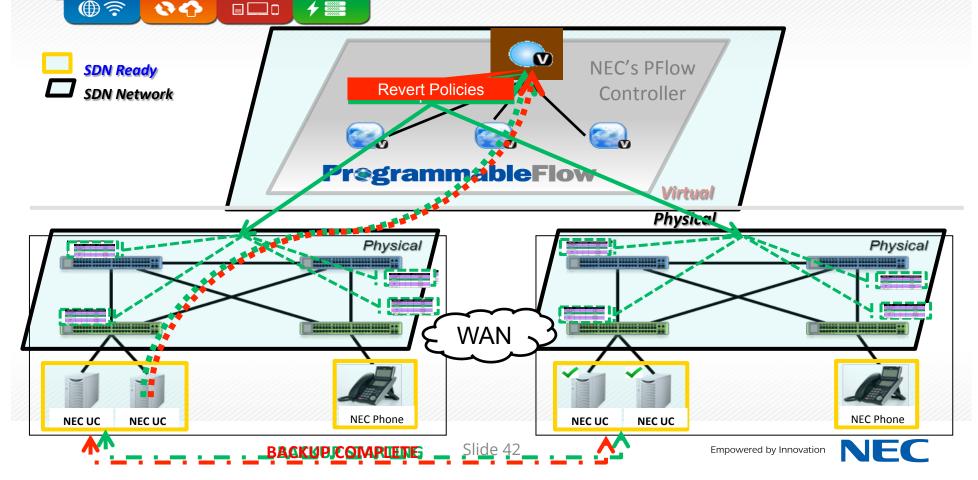
| Traffic Type    | L2 (802.1p/CoS) | L3 (IP Precedence/DiffServ) | Policy Mbps (100Mbps) |
|-----------------|-----------------|-----------------------------|-----------------------|
| Voice Signaling | 7               | 56 (EF)                     | 20                    |
| Voice RTP       | 7               | 56 (EF)                     | 40                    |
| Internetworking | 6               | 46 (EF)                     | 5                     |
| Video           | 5               | 40 (AF40)                   | 10                    |
| UC              | 4               | 30 (AF30)                   | 5                     |
| Web or Data     | 0               | 0 (AF0)                     | 20                    |



Slide 39



# Disaster Recovery SDN Ready Platforms (1/2)


- Provision Recovery Network QoS, Bandwidth & Policies
  - UNIVERGE Voice/UC & Collaboration Applications
- Advantages
  - Provide Dynamic Disaster Recovery Communication(s)
  - Re-allocate resources across network in Disaster Recovery State
  - Centralized Disaster Recovery Management

| Traffic Type    | L2 (802.1p/CoS) | L3 (IP Precedence/DiffServ) |
|-----------------|-----------------|-----------------------------|
| Voice Signaling | 7               | 56 (EF)                     |
| Voice RTP       | 7               | 56 (EF)                     |
| Backup          | 6               | 48 (EF)                     |
| Internetworking | 5               | 46 (EF)                     |
| Video           | 4               | 40 (AF40)                   |
| UC              | 4               | 40 (AF30)                   |
| Web or Data     | 0               | 0 (AF0)                     |

Slide 41

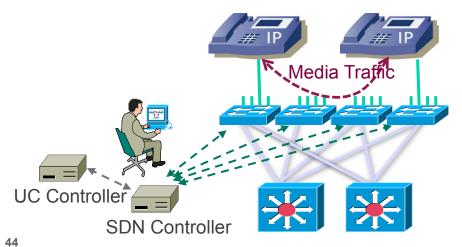
Empowered by Innovation





## **Thank You to NEC!**

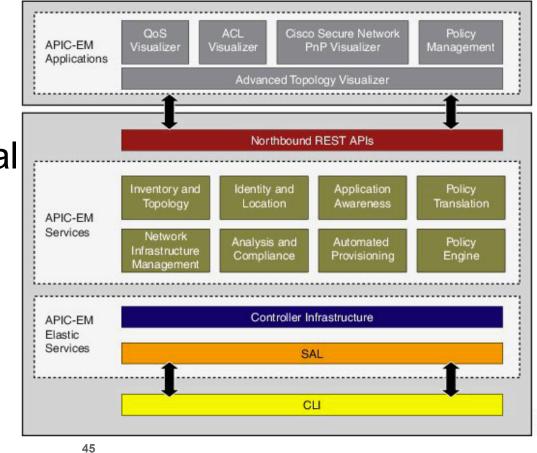





## Policies Provide Administrator Control

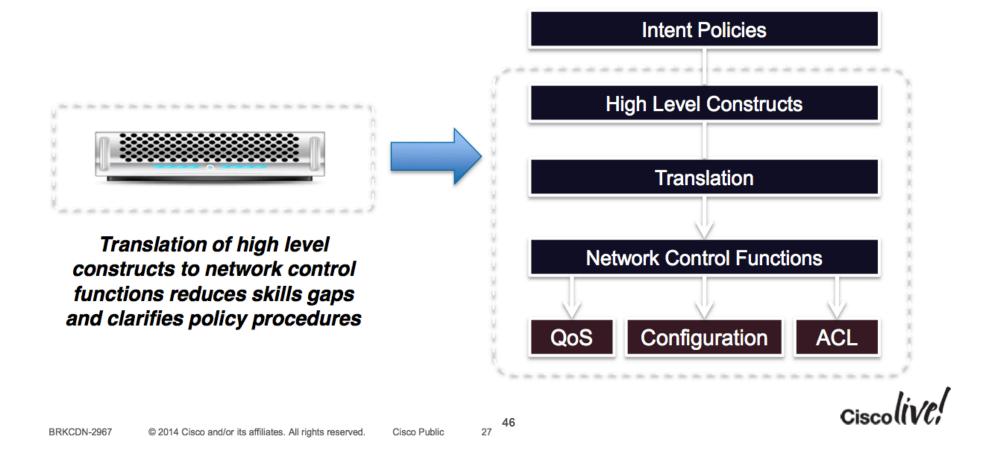
- Specifying path selection mechanism and criteria
- How to handle oversubscription
  - Tell UC controller to adjust codec on existing calls
  - Deny call or drop packets
  - Mark down media traffic
  - Move traffic to other paths
- Assign application traffic priorities
  - Healthcare: health monitoring apps vs UC




© All Rights Reserved



## Cisco: APIC Enterprise Module V2 Beta


- Application Policy Infrastructure Controller (APIC)
- Works with traditional network equipment
  - Applications or app interface modules
  - Basic services layer
  - Device control via Service Abstraction Layer (SAL)

NetCraftsmen



© All Rights Reserved

#### **Intent Policy Management Service**



### Agenda

**Traditional Networking** 

SDN and UC

**RESTAPI** 

Future Directions and Summary



© All Rights Reserved

## Representational State Transfer (REST) API

- Simple stateless data transfer mechanism
  - Generally operates over HTTP
  - XML or JavaScript Object Notation (JSON) encoding
- Four functions (CRUD):



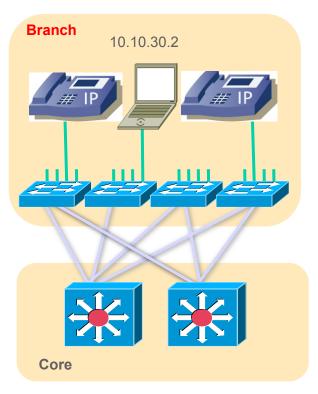
```
JSON Format:
{
    "id": 1,
    "name": "Foo",
    "price": 123,
    "tags": [ "Bar", "Eek" ],
    "stock": {
        "warehouse": 300,
        "retail": 20
    }
}
Header: Content-Type: Application/JSON
```

#### **Simple Policy**

```
http://10.10.10.10:8081/api/v0/policy POST
 "actions": ["DENY"],
  "policyOwner":"admin",
  "policyName": "deny all",
  "networkUser": {"userIdentifiers": ["10.10.20.7"]}, # src IP
  "resource": {"applications": ["0,0,TCP"]} # dst ports (optional)
}
userIdentifier can be an IP address || user-id ||group-id
Response
    "version": "0.0",
    "response": "16cbd3f9-cb02-49cb-bbcd-c661dfc75d5e"
}
                                                               Ciscoliv
```

#### Policy created on controller

```
http://10.10.10.10.8081/api/v0/policy/16cbd3f9-cb02-49cb-bbcd-c661dfc75d5e GET
{
    "version": "0.0",
    "response": {"policyPriority": 64,
                    "actions": ["DENY"],
                    "policyId": "16cbd3f9-cb02-49cb-bbcd-c661dfc75d5e",
                    "policyName": "deny all",
                    "policyOwner": "admin",
                    "networkUser": {"userIdentifiers": ["10.10.20.7"]},
                    "resource": {"applications": ["0,0,TCP"]},
                    "state": "Active"
                    }
                                                                                  Ciscolin
                                                50
BRKCDN-2967
           © 2014 Cisco and/or its affiliates. All rights reserved.
                                    Cisco Public
                                             33
```


## **Device Tagging**

#### Group devices by function or role

- Automation aid
- Group configuration
- Defines the scope of policies

#### • Example

- Configure Core for queuing and forwarding
- Configure Branch for classification, marking, and queuing





© All Rights Reserved

#### Scope of policy

```
http://10.10.10.10:8081/api/v0/policy POST
```

```
{
  "actions": ["DENY"],
  "policyName": "denyweb",
  "policyOwner": "Admin",
  "networkUser": {"userIdentifiers": ["10.10.30.2"],
                            "applications": ["80,80,TCP"]},
  "scope" : "branch"
}
```

52

Only applied to devices with tag "branch"

Ciscoliv/

#### **Marking Traffic**

```
http://10.10.10.10:8081/api/v0/policy POST
```

```
{
  "actions": ["PERMIT"],
  "policyName": "src-marking",
  "policyOwner": "Admin",
  "actionProperty": {"priorityLevel": "46"}, #DSCP bits
  "networkUser": {"userIdentifiers": ["10.10.20.5"]} #src IP
}
```

## **API** Maturity

- Most APIs are low-level
  - Some emulate CLI-level functionality
  - Higher-level abstractions are being developed
    - Scope (tagging) and End-Point-Groups
    - Abstract QoS definitions (hides details of classification/marking)
  - Documentation is often vague

#### • North-Bound Interfaces are maturing

- Middleware is a valuable component (e.g., QoE Services)
- Use-cases are helping define required functionality



© All Rights Reserved

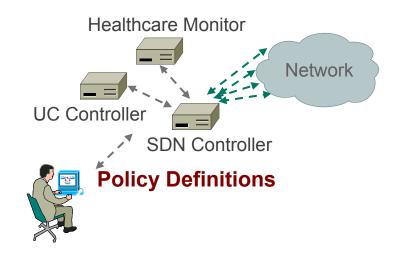


### Agenda

**Traditional Networking** 

SDN and UC

RESTAPI


Future Directions and Summary



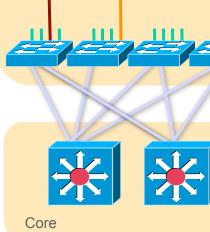
© All Rights Reserved

## **Future Directions**

- Network must communicate back to the application
  - Communicate bandwidth changes (failure or new capacity)
  - Handling oversubscription
  - Monitoring and diagnostics
- Smart policy engines
  - Help resolve conflicts between applications
  - Simplify policy creation mechanisms






© All Rights Reserved

## Summary

- Need high level abstractions
  - Simplify how we think about networks
  - Device groups (Cisco: device tags)
  - Interface groups (Cisco: End Point Groups – EPG)
  - Device-independent QoS definitions
  - L3 forwarding domains (multi-tenancy)
- Prediction
  - Today: One application per VM
  - Future: One application per L3 network domain
    - Simplify service chaining



© All Rights Reserved



10.10.30.2

Branch

## Summary

- SDN is happening!
  - Progress has been fast
  - Production rollout is limited by equipment refresh
- Plan for 2 to 4 times the voice-data convergence effort
  - Cultural changes must occur
  - Start with a small pilot program
  - Cross-discipline team (network, security, IT)
  - SDN resources at http://www.netcraftsmen.com/resources/sdn-resources/



© All Rights Reserved



### **Questions?**

#### SDN APIs for Communications When Applications and the Network Talk with Each Other

Terry Slattery Principal Consultant NetCraftsmen CCIE #1026



© All Rights Reserved